Setting up experimental Bell test with reinforcement learning

Year
2020
Type(s)
Author(s)
Alexey A. Melnikov, Pavel Sekatski, Nicolas Sangouard
Source
arXiv:2005.01697 (2020)
Url(s)
https://arxiv.org/abs/2005.01697
BibTeX
BibTeX

Finding optical setups producing measurement results with a targeted probability distribution is hard as a priori the number of possible experimental implementations grows exponentially with the number of modes and the number of devices. To tackle this complexity, we introduce a method combining reinforcement learning and simulated annealing enabling the automated design of optical experiments producing results with the desired probability distributions. We illustrate the relevance of our method by applying it to a probability distribution favouring high violations of the Bell-CHSH inequality. As a result, we propose new unintuitive experiments leading to higher Bell-CHSH inequality violations than the best currently known setups. Our method might positively impact the usefulness of photonic experiments for device-independent quantum information processing.

Leave a Reply

Your email address will not be published. Required fields are marked *

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close